	
 		

	
		
		
		
			
			
		viewer.pdfjpgconverter.com

			
				
		
		
	
	
		
 		
			
	
	
	
 	
	
	
 	
 		
		

		
			

			
				
				
	
viewer.pdfjpgconverter.com

			
			

		
		

		
		

	
	
	

ASP.NET Web PDF Document Viewer/Editor Control Library

In this section, we go through the steps of selecting, inserting, updating, or deleting objects using the custom classes generated as described in the previous section. The class DemoORAData illustrates these steps for us and is explained in comments interspersed within the code: /** This program demonstrates how to use the Java class * MyAddressORAData to perform DMLs. * COMPATIBLITY NOTE: runs successfully against 10.1.0.2.0. * and 9.2.0.1.0. */ import java.util.HashMap; import java.sql.SQLException; import java.sql.ResultSet; import java.sql.Connection; import java.sql.PreparedStatement; import oracle.jdbc.OracleResultSet; import oracle.jdbc.OraclePreparedStatement; import book.util.JDBCUtil; import book.ch10.jpub.MyAddressORAData; public class DemoORAData { public static void main(String[] args) throws Exception { Connection connection = null; try { connection = JDBCUtil.getConnection ("benchmark", "benchmark", "ora10g");

free visual basic qr code generator,
winforms barcode,
winforms code 128,
ean 128 vb.net,
vb.net ean 13,
vb.net pdf417 free,
itextsharp remove text from pdf c#,
itextsharp replace text in pdf c#,
vb.net data matrix generator vb.net,
c# remove text from pdf,

: ('a -> 'b)
First event in pipeline. Leveraged for authentication by Forms-based, Windows-based, and Passport authentication. Used for authorization by the ASP.NET Role Manager. Also taken advantage of by file authorization and URL authorization modules. Used by the Output Cache module.
5 55 100

Here are examples of how to use some of the functions from Table 3-9. The last two examples use function values, which we cover in more detail in Introducing Function Values later in this chapter. > List.hd [5; 4; 3];; val it : int = 5 > List.tl [5; 4; 3];; val it : int list = [4; 3] > List.map (fun x -> x*x) [1; 2; 3];; val it : int list = [1; 4; 9] > List.filter (fun x -> x % 3 = 0) [2; 3; 5; 7; 9];; val it : int list = [3; 9]

The main points to note from the program DemoPrefetch are PreparedStatement inherits the fetch size set at the OracleConnection level. For PreparedStatement, we can change the fetch size at the Statement level (it works). For CallableStatement, we have to set the fetch size at the ResultSet level, since setting it at the CallableStatement level does not work due to a bug. If we override the fetch size at the ResultSet level, the very first fetch uses the fetch size set at the PreparedStatement level (or the OracleConnection level if it is not set at the PreparedStatement level). The subsequent fetches use the fetch size set at the ResultSet level. Fetch size does not have an impact on the total number of rows returned by query. It just sets the number of rows that would be transparently cached by the JDBC client. This is shown in our example by the fact that the number of iterations in the loop is always 100 because the query retrieves a total of 100 rows. Increasing the fetch size (to a certain limit) reduces the number of logical I/Os, which usually improves performance as demonstrated in the section Logical and Physical I/Os in 2. We ll measure this performance improvement in the next section.
Data structures are generally divided between mutable and immutable, a distinction touched upon in 2 and covered in more detail in 4. Immutable data structures are sometimes called persistent or simply functional. Here are some of the immutable data structures commonly used with F#: Tuple values and option values: These are immutable and are basic workhorses of F# programming. Immutable linked lists of type 'a list: These are cheap to access from the left end. They are inefficient for random access lookup because the list must be traversed from the left for each lookup, that is, random access lookup is O(n) where n is the number of elements in the collection. The full name of this type is Microsoft.FSharp.Collections.List<'a>. Immutable sets based on balanced trees: We show some example uses of immutable sets in 2, and an implementation is provided via the type Set<'a> in the F# library namespace Microsoft. FSharp.Collections. These are cheap to add, access, and union, with O(log(n)) access times, where n is the number of elements in the collection. Because the type is immutable, internal nodes can be shared between different sets. Immutable maps based on balanced trees: These are similar to immutable sets but associate keys with values (that is, they are immutable dictionaries). One implementation of these is provided via the F# library type Map<'key,'value> in Microsoft.FSharp.Collections. As with sets, these have O(log(n)) access times. We cover imperative programming and mutable data structures in 4.
New events to exert programmatic influence over the handler to be used for the request. Session state restored for persistence (memory, state server, or SQL Server). Last event before and after execution of actual handler for request. After PreRequestHandlerExecute is finished, the ProcessRequest method of the handler is called. This is where the real nuts and bolts of the request processing actually occurs. Session state returned to persistence.

		

	
	
		
		

	
				
				
		 Copyright 2020.
	

	
	

	

	
	
	
	

